Bleeding after tonsillectomy

Joacim Stalfors M.D, Ph. D, Associate professor
Chief Quality Officer, Sheikh Khalifa Hospital, Ajman, United Arab Emirates
Definitions

• Primary bleeding – within 24h
• Secondary bleeding – after 24h
• Early bleeding – During care
• Late bleeding – After discharge/ hospital visit
Evolution of Tonsil surgery

1900

Tonsilotomy
"guillotine"

1950

Cold steel

1980

Monopolar diathermy

1990

Bipolar diathermy
Ultrasound
Coblation
Anatomy of the arteries

Thumfart et al 1998
Post-tonsillectomy haemorrhage rates are related to technique for dissection and for haemostasis. An analysis of 15734 patients in the National Tonsil Surgery Register in Sweden

Söderman, A.-C. Hessén,*† Odhagen, E.,‡§ Ericsson, E.,† Hemlin, C.,** Hultcrantz, E.,†† Sunnergren, O.‡‡ & Stalfors, J.†§

*Department of Otorhinolaryngology, Aleris Sabbatsberg, †Division of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, ‡Department of Otorhinolaryngology, Sahlgrenska University Hospital, §Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, †School of Health and Medical Sciences, Örebro University, Örebro, **Sollentuna Specialist Clinic, Stockholm, ††Department of Otorhinolaryngology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, ‡‡Department of Otorhinolaryngology, Ryhov County Hospital and Futurum, the Academy for Health and Care, County Council, Jönköping

Accepted for publication 12 December 2014
Representative data?

- The National Tonsil Surgery Register in Sweden
- A total of 15,734 patients operated 2009-2013
- Completeness 2014 83.3%
- Patient-reported re-admission due to bleeding, answering rate 61% in questionnaire sent 30 days post-op.
- In part validated: no difference in bleeding rates between those who had/ had not answered the 30 days survey
Demography an type of surgery and heamostasis

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Cold steel + cold haemostasis</th>
<th>Cold steel + hot haemostasis</th>
<th>Bipolar scissors</th>
<th>Ultrascission</th>
<th>Coblation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=15734</td>
<td>n=1169 (7.4%)</td>
<td>n=10278 (65.3%)</td>
<td>n=2472 (15.7%)</td>
<td>n=391 (2.5%)</td>
<td>n=1424 (9.1%)</td>
</tr>
<tr>
<td>AGE</td>
<td>19 (1-91)</td>
<td>19 (1-75)</td>
<td>19 (1-91)</td>
<td>20 (1-83)</td>
<td>18 (2-77)</td>
<td>19 (1-77)</td>
</tr>
<tr>
<td>SEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>6489 (41.2%)</td>
<td>496 (42.4%)</td>
<td>4226 (41.1%)</td>
<td>1023 (41.4%)</td>
<td>160 (40.9%)</td>
<td>584 (41.0%)</td>
</tr>
<tr>
<td>F</td>
<td>9245 (58.8%)</td>
<td>673 (57.6%)</td>
<td>6051 (58.9%)</td>
<td>1449 (58.6%)</td>
<td>231 (59.1%)</td>
<td>840 (59.0%)</td>
</tr>
</tbody>
</table>
Early posttonsillectomy haemorrhage

<table>
<thead>
<tr>
<th>Method</th>
<th>Unjusted ratio</th>
<th>p-value</th>
<th>Adjusted* odds ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold steel + cold hemostasis</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cold steel + hot hemostasis</td>
<td>1.16 (0.81-1.64)</td>
<td>0.4212</td>
<td>1.13 (0.79-1.61)</td>
<td>0.4998</td>
</tr>
<tr>
<td>Bipolar scissors</td>
<td>0.78 (0.51-1.19)</td>
<td>0.2486</td>
<td>0.74 (0.48-1.14)</td>
<td>0.1717</td>
</tr>
<tr>
<td>Coblation</td>
<td>1.30 (0.85-2.00)</td>
<td>0.2306</td>
<td>1.29 (0.84-1.99)</td>
<td>0.2417</td>
</tr>
<tr>
<td>Ultrascission</td>
<td>0.33 (0.12-0.95)</td>
<td>0.0394</td>
<td>0.33 (0.12-0.92)</td>
<td>0.0351</td>
</tr>
</tbody>
</table>

The analysis is adjusted for sex and age.
The analysis is adjusted for sex, age and indication.

<table>
<thead>
<tr>
<th></th>
<th>Unjusted odds ratio</th>
<th>p-value</th>
<th>Adjusted odds ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold steel+cold hemostasis</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cold steel + hot hemostasis</td>
<td>2.84 (1.82-4.42)</td>
<td><.0001</td>
<td>2.80 (1.80-4.36)</td>
<td><.0001</td>
</tr>
<tr>
<td>Bipolar scissors</td>
<td>4.53 (2.85-7.20)</td>
<td><.0001</td>
<td>4.28 (2.69-6.82)</td>
<td><.0001</td>
</tr>
<tr>
<td>Coblation</td>
<td>3.21 (1.97-5.22)</td>
<td><.0001</td>
<td>3.20 (1.97-5.22)</td>
<td><.0001</td>
</tr>
<tr>
<td>Ultrascission</td>
<td>5.67 (3.28-9.79)</td>
<td><.0001</td>
<td>5.63 (3.25-9.73)</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Publications

How much of the bleeding risk depends on surgical and hemostasis risk?

In the distribution between units 31% can be explained by the degree of cold/cold techniques.

"Our data suggest that experience of the surgeon may have greater bearing on post-tonsillectomy bleed rates than the technology used."

Take home message

• The risk for post-tonsillectomy haemorrhage is related to surgical technique.
• All hot techniques resulted in a significant higher risk compared with cold steel for dissection + cold haemostatis
• There is also unknown factors affecting risk of bleeding, probably surgical performance/experience.