3RD INTERNATIONAL SYMPOSIUM ON

Post Cardiac Arrest Care FOCUSING ON

Neuroprognostication, follow-up, quality-of-life, rehabilitation

September 4-5, 2017 SKÅNE UNIVERSITY HOSPITAL, LUND, SWEDEN

ERC-ESICM multimodal algorithm: PRO

Claudio Sandroni

Dept. of Anaesthesiology and Intensive Care Catholic University School of Medicine – Rome, Italy

COI

Member, Advanced Life Support Working Group

European Resuscitation Council (ERC)

Deputy Chair, Trauma and Emergency Medicine Section

- European Society of Intensive Care Medicine (ESICM)

 Lead author, ERC-ESICM Advisory Statement on prognostication in comatose survivors of cardiac arrest (ASPAC)

It overcomes the limitations of previous prognostication models:

- Based on evidence in non-TTM-treated patients
- Important biases were not addressed
- Inconsistent definition of important accuracy measures, as false positive rate

ASPAC rates predictors based on:

- 1. The level of their accuracy and precision
- 2. The quality of supporting evidence, evaluated using the GRADE methodology

Accuracy of predictors

- Currently used indices predict <u>poor</u> outcome
- Ideally, false positive rate (FPR) should be 0% (=no patient is mistakenly predicted as having a poor outcome)
- We adopted FPR as the main measure of accuracy

Accuracy and precision

- Accuracy = how much the prediction is confirmed by study results

 – FPR, sensitivity, specificity
- Precision = how confident are we that the results of the predictive test are reproducible
 - Confidence interval (CI)
 - Upper bound of 95% confidence interval for FPR
 <5% to define good precision

Quality of evidence

- GRADE Grading of Recommendations Assessment, Development and Evaluation – 2012-2014 version
- First-time use for prognostic accuracy studies

Quality of evidence (GRADE)

- Biases and flaws in literature
 - Self-fulfilling prophecy
 - Inconsistent definition of FPR
 - Inconsistent definition of poor neurological outcome

Quality of evidence (GRADE)

- Biases and flaws in literature
 - Self-fulfilling prophecy
 - Inconsistent definition of FPR
 - Inconsistent definition of poor neurological outcome

Bilaterally absent SSEP N20 wave ≤72 h

N° studies	N° patients	Sensitivity	False positive rate (%)
12	577	49 [44-54]	0.5 [0-3]

→ In 10/12 studies (551/577 pts) SSEP had been used as a criterion for withdrawal of life-sustaining treatments

> Kamps M et al, Intensive Care Med 2013;39:1671-82 Sandroni C et al., Resuscitation 2013;84:1324-38

Quality of evidence (GRADE)

- Biases and flaws in literature
 - Self-fulfilling prophecy
 - Inconsistent definition of FPR
 - Inconsistent definition of poor neurological outcome

Papers with a non-standard definition of false positive rate

- PROPAC Neurology 2006;66:62–68
 Multicentre study, 407 patients
 - PROPAC 2006 definition:

false positives

patients with abnormal test result

• Standard definition:

false positives

patients with favourable outcome

Absent or extensor motor response (M= 1-2) at 72h

• FPR (PROPAC 2006 definition)

 $\frac{FP(7)}{FP(7) + TP(207)} = 3\%[1-6]$

• FPR (standard definition)

 $\frac{FP(7)}{FP(7) + TN(13)} = 35\%[12 - 58]$

Quality of evidence (GRADE)

- Biases and flaws in literature
 - Self-fulfilling prophecy
 - Inconsistent definition of FPR
 - Inconsistent definition of poor neurological outcome

Cerebral performance categories

СРС	Neurological status	
1	Conscious, independent, no or minor neurological deficits	
2	Conscious, independent, moderate neurological deficits	
3	Conscious, dependent, major neurological deficits	
4	Unconscious, dependent (vegetative)	
5	Dead	

Poor neurological outcome = CPC 3, or 5

CPC thresholds for poor neurological outcome

Sandroni C., Nolan JP, Resuscitation 2015; 90: A4-5.

 It includes predictive indices that were not considered in previous guidelines:

– EEG

– Imaging (brain CT, MRI)

 They are recommended as a standard for outcome assessment in patients who remain comatose after cardiac arrest

Techniques used for prognostication: a European Survey

Total 1025 responses (80% Europe)

617 (63%)
576 (58%)
351 (36%)
390 (40%)
187 (19%)
113 (11%)
48 (5%)
42 (4%)

- It accounts for interference from sedation and TTM on clinical examination
- Predictors are applied according to a time line based on the timing of TTM and subsequent recovery

	Cardiac arrest	AR A
Days 1-2	Controlled temperature	
	Rewarming	R C
Days 3-5	Exclude confounders, particularly residual sedation Unconscious patient, M=1-2 at ≥72h after ROSC ↓ Prognostication	

- It accounts for interference from sedation and TTM on clinical examination
- Predictors are applied according to a time line based on the timing of TTM and subsequent recovery
- Predictors are stratified according to their robustness

Strength of predictors

- Most robust
 - -Ocular reflexes
 - -SSEPs
- Characteristics:
 - FPR <5%, 95%Cls <5% in TTM-treated patients
 - -documented in \geq 5 studies
 - -at least 3 different groups of investigators

Kim et al JAMA 2014; 311:45-52

Recommendation on level-of-care in 313/939 (33%) prognosticated patients

Dragancea I et al., Resuscitation 2017; 117:50-7

Less robust predictors

- Include:
 - Status myoclonus
 - -EEG
 - Biomarkers
 - -Neuroimaging
- Characteristics:
 - FPR <5% but wider 95% Cls
 - and/or inconsistent definition/threshold

- Multimodal approach
- Even the most robust predictors do not ensure 100% specificity
 - Important when WLST is considered

5 - Pros of multimodality

- Predictors of good neurological outcome can be considered to counterbalance falsenegative predictions
- Parisian OHCA registry (2016)
 - 4/194 patients with an eventually good outcome had an apparent bilaterally absent pupillary reflex (FPR 2%).
 - All of these patients had a reactive EEG

- Flexible design
- Continuous evidence evaluation
- Planned update every 5 years
 - ILCOR evidence review for resuscitation guidelines
 - Interim statements allowed

ERC-ESICM algorithm: limitations

1. Combinations of predictors need to be validated prospectively

- Tetsou et al Neurocrit Care 2017, in press.

- 2. Predictors need an unbiased confirmation in populations with no or late WLST
 - Studies ongoing
- 3. Other EEG predictors need to be included
 - Using consistent definitions (ACNS)
 - Timing of EEG will need revision

Causes of death

- CPC and mRS only report death regardless of underlying cause
- Death from direct "neurological" mechanism uncommon
- CPC5b, CPC5w, CPC5c....

Future developments

- 1. Evaluation of multiple prediction models
 - Using appropriate evidence evaluation measures
- 2. Inclusion of predictors of good neurological outcome

Thank you for your attention!

claudio.sandroni@unicatt.it

